ОДНОРОДНАЯ ПЛОСКАЯ ЭЛЕКТРОМАГНИТНАЯ ВОЛНА В БЕЗГРАНИЧНОЙ ИЗОТРОПНОЙ СРЕДЕ

ЗАДАЧА

Плоская э/м волна с частотой f, поляризованная в плоскости XOZ, распространяется вдоль оси OZ в неограниченном пространстве с параметрами $\varepsilon_a = \varepsilon \, \varepsilon_0$, $\mu_a = \mu \mu_0$, σ . Амплитудное значение вектора напряженности электрического поля в начале координат $\overline{E}_m = \overline{\chi}_0 E_m$.

Определить:

- 1. Характер среды (по значению tgδ)
- Параметры волны: α,β, γ, фазовую скорость, волновое сопротивление, таблицы для заполнения представлены в Приложении А.
- 3. Записать комплексные и мгновенные значения векторов $\overline{E}, \overline{H}$ и \overline{H} в точке с координатой Z, соответствующей уменьшению амплитуды поля на L, дБ.
- Постройте зависимость коэффициента затухания, коэффициента фазы, фазовой скорости и тангенса угла диэлектрических потерь от частоты, таблицы для заполнения представлены в Приложении А.
- 5. Постройте зависимость длины волны и фазового сдвига между векторами E и H от диэлектрической проницаемости среды ε , таблицы для заполнения представлены в Приложении A
 - 6. По полученным зависимостям сделать вывод.
- 7. Подготовить отчет с выводами (файл MS Word), таблицы и графики в прилагаемом файле MS Ecxel OTЧЕТ.xls

Таблица 1.1 - Исходные данные

1	2	3	4	5	6	7	8	9
10	20	30	40	50	60	70	80	90
2	2,2	2,5	3	3,5	4	4,5	5	5,5
1,1	1,0	1,23	1,67	2,3	2,0	1,13	1,5	1,08
90	100	200	300	400	500	600	700	800
80	1	200	3	140	5	10	7	85
4	10	15	60	20	5	8	12	11
	1 10 2 1,1 90	1 2 10 20 2 2,2 1,1 1,0 90 100 80 1	1 2 3 10 20 30 2 2,2 2,5 1,1 1,0 1,23 90 100 200 80 1 200	1 2 3 4 10 20 30 40 2 2,2 2,5 3 1,1 1,0 1,23 1,67 90 100 200 300 80 1 200 3	1 2 3 4 5 10 20 30 40 50 2 2,2 2,5 3 3,5 1,1 1,0 1,23 1,67 2,3 90 100 200 300 400 80 1 200 3 140	1 2 3 4 5 6 10 20 30 40 50 60 2 2,2 2,5 3 3,5 4 1,1 1,0 1,23 1,67 2,3 2,0 90 100 200 300 400 500 80 1 200 3 140 5	1 2 3 4 5 6 7 10 20 30 40 50 60 70 2 2,2 2,5 3 3,5 4 4,5 1,1 1,0 1,23 1,67 2,3 2,0 1,13 90 100 200 300 400 500 600 80 1 200 3 140 5 10	1 2 3 4 5 6 7 8 10 20 30 40 50 60 70 80 2 2,2 2,5 3 3,5 4 4,5 5 1,1 1,0 1,23 1,67 2,3 2,0 1,13 1,5 90 100 200 300 400 500 600 700 80 1 200 3 140 5 10 7

Примечание: Вариант выбирается по последней цифре студенческого билета (если цифра 0, то берется 1-й вариант).

 $\varepsilon = \mu = 1 - для воздуха.$

ПРИЛОЖЕНИЕ А

ФОРМА ОТЧЕТА

Студент		_
Шифр		

Практическое занятие №1 «Плоские электромагнитные волны»

TO 4	_	
1 20	оппипа	Δ Ι
1 av	ишца	7

tg(δ)	α β		v _#	Zc	Ψ	Z	

Таблица А.2

таоницат	1.2								
f, MГų	90	100	200	300	400	500	600	700	800
tg(δ)							·		
α									
β									
V.≠									

Таблица А.3

3	2	2,2	2,5	3	3,5	4	4,5	5	5,5
λ, м									
ø									

Выводы:

Задание 2. Исходные данные для исследований плоской электромагнитной волны

ει	16
μι	16
ε2	8
μ_2	10
Ө _{пад} , град.	48

- $1. \; \theta_{\text{прел.}}, \nu_1, \nu_2, \, n_1, \, n_2, \, n_{21}, \, Z_{c1}, \, Z_{c2}, \, R$ и T (для нормально поляризованной волны и параллельно поляризованной волны), а также рассчитать R и T для частного случая (нормального падения).
- 2. Построить зависимость R и T (для нормально поляризованной волны и параллельно поляризованной волны) при различных значениях ϵ_1 , μ_1 , расчеты свести в таблицу 2.3 и таблицу 2.4.

Таблица 2.3 - Зависимость R и T от диэлектрической проницаемости ϵ_1 (для нормально поляризованной волны и параллельно-поляризованной волны) при фиксированной частоте и μ_1

ει	1	2,5	3,2	6	9,8	12,3	15,7	25	28	30
R _{н-п}										
Тн-п										
R _{п-п}										
Тп-п										

Таблица 2.4 - Зависимость R и T от магнитной проницаемости μ_1 (для нормально поляризованной волны и параллельно-поляризованной волны) при фиксированной частоте и ϵ_1

μι	1	1,2	2,8	4,3	15,4	16,7	20,8	23,9	26	34
R _{н-п}										
Т _{н-п}										
R _{п-п}										
Тп-п										

Данные таблицы заполняются в файле MS Excel - ОТЧЕТ.

По полученным зависимостям сделать вывод и ответить на контрольные вопросы.

Задание 3.

- **1.** Определить критическую длину волны, \mathbf{H}_{10} критическую частоту и длину волны в прямоугольном волноводе для основного типа . Размеры поперечного сечения волновода 23x10 мм. Частота колебаний 10 ГГц (внутренняя среда воздух).
- **2.** Определить диапазон частот, в пределах которого в круглом волноводе диаметром 4 см может распространяться только основной тип волны.
- **3.** Для коаксиальной линии передачи с размерами поперечного сечения d=5 мм, D=11 мм вычислить частоту, до которой волны высших типов не распространяются. Как изменится значение частоты, если коаксиальную линию заполнить диэлектриком с $\epsilon=2,1$?