Контрольная работа по теме «Функции нескольких переменных»

Вариант 0

3адача 1. Задана функция $z = x^2 y^3 - \frac{2x}{y}$ и точка $M_0(1,2)$.

Найти

- 1) дифференциал первого порядка $dz(M_0)$;
- 2) дифференциал второго порядка $d^2z(M_0)$.

Записать в окрестности точки M_0 многочлен Тейлора второго порядка $P_2(x,y)$ (без остаточного члена)

Задача 2. Задана функция $z = 7x^3 - xy^4 + 3y$ и точка $M_0(1, -1)$.

Найти

- 1) градиент функции $\nabla z(M_0)$;
- 2) производную $\frac{\partial z(M_0)}{\partial \bar{s}}$ по направлению вектора $\bar{s} = \overline{OM_0}$, где точка O(0;0) начало координат;
 - 3) уравнение касательной плоскости в точке M_0 ;
 - 4) уравнение нормали в точке M_0 .

Задача 3. Найти полную производную $\frac{dz}{dt}$

если
$$z = 2^{x-y} + \sqrt{xy} - 3y^2$$
, где $x = \lg t$ и $y = \operatorname{ctg} t$.

Задача 4. Найти экстремум функции двух переменных

$$z = x^3 - 3xy + 3x + 3y^2 - 15y - 5$$

Вариант 1

Задача 1. Задана функция $z = x^3y^3 - \frac{y}{x^2}$ и точка $M_0(-1,2)$.

Найти

- 1) дифференциал первого порядка $dz(M_0)$;
- 2) дифференциал второго порядка $d^2z(M_0)$.

Записать в окрестности точки M_0 многочлен Тейлора второго порядка $P_2(x,y)$ (без остаточного члена)

Задача 2. Задана функция $z = (x - 5y)^2 - xy^3 + 2y$ и точка $M_0(5, 1)$.

Найти

- 1) градиент функции $\nabla z(M_0)$;
- 2) производную $\frac{\partial z(M_0)}{\partial \bar{s}}$ по направлению вектора $\bar{s} = \overline{OM_0}$, где точка O(0;0) начало координат;
 - 3) уравнение касательной плоскости в точке M_0 ;
 - 4) уравнение нормали в точке M_0 .

Задача 3. Найти полную производную $\frac{dz}{dt}$,

если
$$z = \frac{1}{x} + \sqrt[3]{x - y} + e^{xy}$$
, где $x = e^t$ и $y = t^2$.

$$z = 3x^2 + xy - 13x + y^3 - 5y + 1$$

Вариант 2

3адача 1. Задана функция $z=x^3y^2+rac{5y^3}{x}$ и точка $M_0(2,1)$.

Найти

- 1) дифференциал первого порядка $dz(M_0)$;
- 2) дифференциал второго порядка $d^2z(M_0)$.

Записать в окрестности точки M_0 многочлен Тейлора второго порядка $P_2(x,y)$ (без остаточного члена)

3адача 2. 3адана функция $z=(3y+x)^2-xy+2$ и точка $M_0(4,-2)$.

Найти

- 1) градиент функции $∇z(M_0)$;
- 2) производную $\frac{\partial z(M_0)}{\partial \bar{s}}$ по направлению вектора $\bar{s} = \overline{OM_0}$, где точка O(0;0) начало координат;
 - 3) уравнение касательной плоскости в точке M_0 ;
 - 4) уравнение нормали в точке M_0 .

 $\frac{dz}{dt}$, Найти полную производную $\frac{dz}{dt}$,

если $z = \frac{x}{y} + \arcsin(xy)$, где $x = \sin t$ и $y = \cos t$.

Задача 4. Найти экстремум функции двух переменных

$$z = x^3 - 3xy - 6x + 3y^2 - 6y + 4$$

Вариант 3

3адача 1. Задана функция $z=2xy^2-\frac{3x^2}{y}$ и точка $M_0(2,-2)$.

Найти

- 1) дифференциал первого порядка $dz(M_0)$;
- 2) дифференциал второго порядка $d^2z(M_0)$.

Записать в окрестности точки M_0 многочлен Тейлора второго порядка $P_2(x,y)$ (без остаточного члена)

Задача 2. Задана функция $z = 3x^2y - 2xy^2 + 2y$ и точка $M_0(2, 1)$.

Найти

- 1) градиент функции $∇z(M_0)$;
- 2) производную $\frac{\partial z(M_0)}{\partial \bar{s}}$ по направлению вектора $\bar{s} = \overline{OM_0}$, где точка O(0;0) начало координат;
 - 3) уравнение касательной плоскости в точке M_0 ;
 - 4) уравнение нормали в точке M_0 .

 $\frac{dz}{dt}$, Найти полную производную $\frac{dz}{dt}$,

если
$$z=4^{xy}+\sqrt{x-y}$$
, где $x=\cos 2t$ и $y=\sin 2t$.

$$z = x^2 + 2xy - 2y^3 + 8y - 3$$

Вариант 4

3адача 1. Задана функция $z = 3x^2y - \frac{x+2}{y}$ и точка $M_0(3,-1)$.

Найти

- 1) дифференциал первого порядка $dz(M_0)$;
- 2) дифференциал второго порядка $d^2z(M_0)$.

Записать в окрестности точки M_0 многочлен Тейлора второго порядка $P_2(x,y)$ (без остаточного члена)

Задача 2. Задана функция $z = y^3 + x^2y + 5x$ и точка $M_0(-3, 1)$.

Найти

- 1) градиент функции $∇z(M_0)$;
- 2) производную $\frac{\partial z(M_0)}{\partial \bar{s}}$ по направлению вектора $\bar{s} = \overline{OM_0}$, где точка O(0;0) начало координат;
 - 3) уравнение касательной плоскости в точке M_0 ;
 - 4) уравнение нормали в точке M_0 .

Задача 3. Найти полную производную $\frac{dz}{dt}$,

если
$$z = 3\sqrt{xy^3} - \sin(xy)$$
, где $x = 2t^2$ и $y = e^t$.

Задача 4. Найти экстремум функции двух переменных

$$z = -x^3 - 6xy + 24x + 4y^2 - 4y + 1$$

Вариант 5

3адача 1. Задана функция $z = 2xy^3 + \frac{y-1}{x}$ и точка $M_0(-2,1)$.

Найти

- 1) дифференциал первого порядка $dz(M_0)$;
- 2) дифференциал второго порядка $d^2z(M_0)$.

Записать в окрестности точки M_0 многочлен Тейлора второго порядка $P_2(x,y)$ (без остаточного члена)

Задача 2. Задана функция $z = (3y + 2x)^2 - y^3 + x$ и точка $M_0(3, -2)$.

Найти

- 1) градиент функции $\nabla z(M_0)$;
- 2) производную $\frac{\partial z(M_0)}{\partial \bar{s}}$ по направлению вектора $\bar{s} = \overline{OM_0}$, где точка O(0;0) начало координат;
 - 3) уравнение касательной плоскости в точке M_0 ;
 - 4) уравнение нормали в точке M_0 .

Задача 3. Найти полную производную $\frac{dz}{dt}$,

если
$$z = \cos\left(\frac{x}{y}\right) + \sqrt[3]{x+y}$$
, где $x = 2^t$ и $y = t^3$.

$$z = 3x^2 - 3xy - 21x + y^3 - 21y - 5$$

 $rac{ ext{Вариант 6}}{ ext{Задача 1.}}$ Задана функция $z=x^3y^2+rac{y}{x-1}$ и точка $M_0(2,-1)$.

Найти

- 1) дифференциал первого порядка $dz(M_0)$;
- 2) дифференциал второго порядка $d^2z(M_0)$.

Записать в окрестности точки M_0 многочлен Тейлора второго порядка $P_2(x,y)$ (без остаточного члена)

Задача 2. Задана функция $z = (2x - y)^2 + 3xy^3$ и точка $M_0(2, -1)$.

- 1) градиент функции $\nabla z(M_0)$;
- 2) производную $\frac{\partial z(M_0)}{\partial \bar{s}}$ по направлению вектора $\bar{s} = \overline{OM_0}$, где точка O(0;0) начало координат;
 - 3) уравнение касательной плоскости в точке M_0 ;
 - 4) уравнение нормали в точке M_0 .

 $\frac{dz}{dt}$ 3. Найти полную производную $\frac{dz}{dt}$

если
$$z = \sqrt{x^2 - y^2} - e^{xy}$$
, где $x = \sqrt{2t}$ и $y = \ln t$.

Задача 4. Найти экстремум функции двух переменных

$$z = x^3 - 4xy - 7x + y^2 + 6y - 2$$

Вариант 7

3адача 1. Задана функция $z = 5xy^4 + \frac{y^2}{r-1}$ и точка $M_0(0,1)$.

Найти

- 1) дифференциал первого порядка $dz(M_0)$;
- 2) дифференциал второго порядка $d^2z(M_0)$.

Записать в окрестности точки M_0 многочлен Тейлора второго порядка $P_2(x,y)$ (без остаточного члена)

Задача 2. Задана функция $z = (x + y)^2 + 5x^2y$ и точка $M_0(1, -1)$.

- 1) градиент функции $\nabla z(M_0)$;
- 2) производную $\frac{\partial z(M_0)}{\partial \bar{s}}$ по направлению вектора $\bar{s} = \overline{OM_0}$, где точка O(0;0) начало координат;
 - 3) уравнение касательной плоскости в точке M_0 ;
 - 4) уравнение нормали в точке M_0 .

Задача 3. Найти полную производную $\frac{dz}{dt}$,

если
$$z = \ln \frac{x}{y+1} + \text{arctg } (x^2y)$$
, где $x = t^2$ и $y = \sqrt{t}$.

$$z = x^2 + 2xy + 6x + y^3 - 34y + 2$$

Вариант 8

3адача 1. Задана функция $z=-3x^4y+rac{x^2}{v+3}$ и точка $M_0(1,-2)$.

Найти

- 1) дифференциал первого порядка $dz(M_0)$;
- 2) дифференциал второго порядка $d^2z(M_0)$.

Записать в окрестности точки M_0 многочлен Тейлора второго порядка $P_2(x,y)$ (без остаточного члена)

Задача 2. Задана функция $z = 2 - y^2 + x^2 y$ и точка $M_0(-3, 1)$.

Найти

- 1) градиент функции $∇z(M_0)$;
- 2) производную $\frac{\partial z(M_0)}{\partial \bar{s}}$ по направлению вектора $\bar{s} = \overline{OM_0}$, где точка O(0;0) начало координат;
 - 3) уравнение касательной плоскости в точке M_0 ;
 - 4) уравнение нормали в точке M_0 .

 $\frac{dz}{dt}$. Найти полную производную $\frac{dz}{dt}$.

если $z = \arcsin(x + y^2) - 3^{xy}$, где $x = \ln t$ и $y = t^3$.

Задача 4. Найти экстремум функции двух переменных

$$z = -3x^3 - 6xy + 18x - 4y^2 - 12y - 4$$

Вариант 9

3адача 1. Задана функция $z = x^5y^3 + \frac{y^3}{r+1}$ и точка $M_0(1,-1)$.

Найти

- 1) дифференциал первого порядка $dz(M_0)$;
- 2) дифференциал второго порядка $d^2z(M_0)$.

Записать в окрестности точки M_0 многочлен Тейлора второго порядка $P_2(x,y)$ (без остаточного члена)

Задача 2. Задана функция $z = x^3 + xy^2 - 3$ и точка $M_0(1,2)$.

Найти

- 1) градиент функции $\nabla z(M_0)$;
- 2) производную $\frac{\partial z(M_0)}{\partial \bar{s}}$ по направлению вектора $\bar{s} = \overline{OM_0}$, где точка O(0;0) начало координат;
 - 3) уравнение касательной плоскости в точке M_0 ;
 - 4) уравнение нормали в точке M_0 .

Задача 3. Найти полную производную $\frac{dz}{dt}$,

если
$$z = \operatorname{tg}\left(\frac{x}{y-1}\right) + \sqrt[3]{x^2 + y^2}$$
, где $x = t^2$ и $y = t^3 + t$.

$$z = x^2 - 2xy - 4y^3 - 52y + 3$$